

The Road To IPv6
Bumpy

Paul Saab
Infrastructure
2014/03/20

1 Motivation

2 Running out of RFC1918

3 IPv6 @ face:b00c

4 The good stuff

5 Where are we now?

Agenda

Motivation

Motivation

▪  We’re out of RFC1918

▪  More on this later.

▪  Why maintain two stacks in your entire network?

▪  Much easier to handle two stacks at the edge and one internally.

▪  It needs to be done someday, why not now while we’re motivated?

▪  Stop engineers from continually writing IPv4 only code that will need
to be fixed later.

▪  Push the industry to move faster and re-prioritize IPv6.

Running out of RFC1918
16,777,216 addresses isn’t enough

/24 for every rack – Genius!

▪  Math is easy

▪  Subnet mask is easy to remember

▪  Wastes a lot of space

▪  254 usable addresses

▪  80 addresses in a rack

▪  /25 is what we could re-number into

▪  Not enough savings

▪  Do it if you want to get to IPv6 faster

Solutions

▪  re-number/re-subnet IPv4

▪  Too much code assumed racks are /24

▪  Too much code assumed clusters are /n (where n < 24)

▪  /25 doesn’t save us much

▪  IPv6

▪  Easier to overlay IPv6 on top of the network than re-subnet

▪  Can be done without taking datacenters/clusters offline

▪  Most importantly, you can test incrementally and iterate

IPv6 @ face:b00c
79,228,162,514,264,337,593,543,950,336 addresses enough?

The Network

▪  Each rack is a /64

▪  Each cluster is a /n (where n < 64)

▪  Layer 3

▪  Core should not handle Neighbor Discovery

▪  fping6 –g xxx::/64 confined to a rack

▪  Just Do It

The Problems - Switches

▪  Vendors do not QA IPv6 like they do IPv4

▪  Started seeing multi-second latency to hosts over IPv6

▪  Occurred when host eth link goes up and down

▪  Suspected Linux

▪  Turns out vendor batch updated to the hardware table

▪  Add and Delete occurred in the same batch

▪  Ended up software switching

▪  Set us back about 6 months

▪  Thousands of racks had to be upgraded

The Problems – Switches (cont)

▪  Hardware ASIC has a separate ECMP table for /65 - /128 routes

▪  Total of 127 entries

▪  Forced us to use /64 for route all route injection

▪  Required us to renumber

▪  Dual BGP sessions

▪  Cluster switches could not support that many BGP sessions

▪  Forced to run IPv4 and IPv6 over a single BGP session

▪  Turning on IPv6 Address Family on BGP sessions to rack switches that
did not have IPv6 enabled crashed all of the rack switches. Awesome!

The Problems – Switches (cont)

▪  Multi-second latency returned again!

▪  Issue was between the rack switch and the cluster switch

▪  No rebuild was needed, just a one line configuration change

▪  Uneven traffic across multiple links

▪  Issue between the rack switch and cluster switch

▪  BGP comes up before Neighbor Discovery

▪  Traffic goes only over links where ND happened before BGP

The Problems - PHP

▪  ip2long is the devil

▪  IP addresses are not integers (or strings!)

▪  Inconsistent API’s to use IPv6 addresses.

▪  Some functions expect a URL (must enclose with brackets for IPv6)

▪  Some functions expect just an IP (no bracket)

The Problems – Strings

▪  Java’s InetAddress produces different zero compressed string than
glibc, FreeBSD, and MacOS X

▪  pick a format and normalize all input

▪  regex matching (10000000 different ways to match an IPv6 address)

▪  "host:port".split(':'), explode(‘:’, “host:port”)

▪  everyone assumes you can split on a ':' to extract a host port

▪  IPv6 addresses must be enclosed in ‘[]’, adds complexity

▪  strcmp(ip1, ip2) == 0

▪  “2a03:2880::1” != “2a03:2880:0000:0000:0000:0000:0000:0001”

The Problems – Storage

Integers Strings

▪  In MySQL use
VARBINARY(16)

Store all in
binary format

The Problems – < glibc-2.17

▪  getaddrinfo(ipv6-ip-address) failed with EAI_FAMILY

▪  Happens once, and continues until process is restarted

▪  Single netlink socket failure inside glibc causes this

▪  Not fixed until glibc-2.17

The Problems – Engineers & AF_INET

▪  GRRRRRRRRRRRR

▪  Engineers have been trained to write IPv4 only code

▪  Must educate the usage of getaddrinfo(3)

▪  Teach engineers about how to use the hints to getaddrinfo(3)

▪  AF_UNSPEC

▪  AI_ADDRCONFIG | AI_PASSIVE

▪  New code constantly being written IPv4 only

▪  Solution

▪  Take away IPv4 on development systems in 2014

The Problems – SLAAC vs Static Assignment

▪  SLAAC

▪  Great idea

▪  Terrible for datacenter deployment

▪  NIC changes, IP address changes

▪  Static Assignment

▪  Avoid encoding IPv4 address in the IPv6 address

▪  But it makes mapping back and forth easy!

▪  What happens when you stop using IPv4?

▪  Take the opportunity to have a clean slate with no dependencies

The Problems – Linux

▪  Routing table

▪  Max size defaults to 4096

▪  Runs garbage collection when there are more than 512 entries

▪  *ALL* connections are cached in the routing table

▪  Default TTL is 30 seconds

▪  Lots of churn happens

▪  ip -6 route show can take forever or even duplicate output

▪  /proc/net/ipv6_route returns ENOMEM with 1000s of connections
(netstat)

The Problems – Linux

▪  non-eth0 addresses unusable on network restart

▪  options ipv6 disable=1

▪  Requires a reboot to enable IPv6

▪  blacklist ipv6 allows you to load IPv6 on a running system

▪  options ipv6 autoconf=0

▪  SLAAC is terrible for datacenter deployments

▪  Do not want multiple addresses on eth0

The Problems – AAAA records

▪  Can break applications which were not expecting an IPv6 address

▪  IPv4 hosts can “fallback” to IPv6 if IPv4 fails to connect

▪  Get back EAFNOSUPPORT

▪  Engineers complain

▪  getaddrinfo(3) returns a list of addresses that applications walk
connecting to until one succeeds

▪  No need with adequate service discovery

▪  Turn on selectively

The Problems – Applications

▪  MySQL 5.6 is required for IPv6 client and server

▪  Curl

▪  Very hostile to the format of the IPv6 address

▪  Wants everything bracket enclosed

▪  Many IPv6 bugs that only recently were fixed

▪  Understand operational behavior of app on IPv4

▪  Engineers don’t monitor under IPv4

▪  All of a sudden they are interested in monitoring when turning on IPv6

▪  Busted code is agnostic to IP protocols

The good stuff
It wasn’t all bad

The Good

▪  We were able to get rid of a lot of technical debt

▪  IPAddress class

▪  Death to strings and integers

▪  Rollout of traffic

▪  Most services were able to slowly roll out IPv6 from 0-100%

▪  Instantaneous rollback if needed

▪  Problems may not show up at 1%, 5% or 10%, but they do at 100%

▪  Iterate Iterate Iterate

▪  Don’t make IPv6 an all or nothing proposition. You will fail.

The Good – Neteng @ Facebook

▪  Clusters were
converted to
Layer 3

▪  IPv6 native to all
cluster and rack
switches after
World IPv6 Day

▪  The real heroes ▪  Backbone
was upgraded
a couple of
years ago

The Good

▪  APIs to detect if host supported IPv6 and it had *working* IPv6

▪  Not all hosts had working IPv6 until recently

▪  IPv6 became a native component of our service discovery framework

▪  all services to be dual stacked

▪  ip:port no longer a reasonable way to identify a service

▪  Thrift already supported IPv6

▪  Most of our non-memcache traffic is thrift

▪  Initially supported IPv6 with V4MAPPED

▪  Separate AF_INET and AF_INET6 sockets today

The Good

▪  Automation built to handle rack switch upgrades

▪  It could never be done

▪  Empowered engineers to do their own maintenance

▪  We finished it

Where are we now?

Where are we now?

100%

of our hosts
we care about

respond
on IPv6

•  Hosts that
are not IPv6
ready are
going away

75%

of our internal
traffic is now

IPv6

•  100% Q3 2014
(or earlier)

98%

of traffic in &
out of HHVM

is IPv6

100%

of our
memcache

traffic is IPv6

100%

IPv6 only
(no RFC1918)
in 2-3 years

Where are we now? (cont)

▪  New IPv6 traffic showing up daily

▪  Engineers asking if they can start writing IPv6-only code today

▪  Latency and other metrics show IPv6 to be the same as IPv4

▪  Plans for first IPv6 only cluster (no RFC1918) by end of 2014

▪  We will not remove RFC1918 from existing clusters

