
1

Interactive Multimedia Search and Exploration
Joachim Tingvold†, Denny Stohr∗, Dominik Schneider∗, and Andrè B. Amundsen†

† University of Oslo
joachim@tingvold.com, andrebam@ifi.uio.no

∗ University of Mannheim
dennystohr@gmail.com, dominik.schneider@students.uni-mannheim.de

Abstract—Flash content and multimedia content in general is quite popular today and widely used. Still there exists no
reasonable way to actually search for, find and explore flash movies on the net. Thus the main objective of this paper is to
describe an intuitive to use search user interface (UI) and an interactive result presentation. For this purpose the fulgeo
prototype (fulgeo: ”flash” in latin) is developed and implemented to provide a showcase for an easy-to-use multimedia
content search UI. Furthermore with more than 1300 files in database the fulgeo search engine has the largest set of
indexed files in comparison to other flash search engines.

Index Terms—Flash retrieval, Multimedia search engine, User Interface, UI.

F

1 INTRODUCTION

MULTIMEDIA documents like PowerPoint
presentations or Flash documents are

widely adopted in the internet and they exist
in context of lots of different topics. However
at the moment there is no user friendly way to
explore and search for this content. Thus, the
aim of the project is to address this issue by
developing an easy-to-use user interface (UI)
and a prototype search engine with the focus
on Flash documents. We created fulgeo based on
scientific findings in the context of multimedia
search that allows users to explore more than
1300 Flash elements as a potential canditate for
a user friendly multimedia search engine.

1.1 Background
The specialty of multimedia content is that it can
be images, videos, sounds and text (Candan and
Sapino (2010) [10]). Further, these media types
can be animated or rearranged by interactions,
which affects time and space. Due to this special
feature, it’s not enough to provide only a text
based search results page, like for example
Google (Fig. 1), but you have to address all
aspects of multimedia. To do this you have to
come up with a diverse set of features that

Fig. 1: Google UI

stimulate different visual senses and give an
intuitive idea of the documents content.
Furthermore different ways to query for these
documents efficiently can exceed keyword
based query by far. Query-by-example tech-
niques for pictures and videos can improve the
finding of relevant results, as well as special
interfaces for audio (Hearst (2009) [6]). Also
query of what animation takes place is possible
(Yang et al (2007) [2])
However, in this paper we only use keyword
based query, as the focus lies on the part after

mailto:joachim@tingvold.com
mailto:andrebam@ifi.uio.no
mailto:dennystohr@gmail.com
mailto:dominik.schneider@students.uni-mannheim.de


2

the query is entered - the results page.

2 RELATED WORK

2.1 Multimedia Search
Although flash was, and still is, a frequently
used multimedia format on the internet, the
work on specialized search engines for flash
movies, and multimedia content in general, is
still limited.

The FLAME (Flash Access and Management
Environment) framework by Yang et al (2007)
[2] can be considered as the most compre-
hensive work on this topic. The focus in this
paper was the indexing and retrieval of flash
movies by a semantic context. The initial search
user interface (UI) consists of an input field
for keyword-queries with a ”Search” and a
”Browse” button, which provides a keyword
based query that looks for matching text in
the flash movies. The results of the search
are displayed below this rudimentary search
field (Fig. 2). The retrieved flash movies are

Fig. 2: FLAME main UI

illustrated with thumbnails, a link to the details
of this movie and a button to find similar
flash movies. On one page, twelve results are
displayed. Furthermore they provided an ”Ad-
vanced Search” page (Fig. 3) where the user can
enter more sophisticated queries via an input
form.

The work of Ding et al (2003)[3] has the focus
on the content-based retrieval problem, and
especially on the creation of a relevance ranking
of search results based on co-occurrences of

Fig. 3: FLAME advanced search UI

elements among flash files. The search UI looks
quite similar to the one of FLAME, although
it doesn’t provide a separate advanced search
page.

In contrast, the work of Chung et al (2004) [4]
has a look on the query costs for flash movie
retrieval in combination with the Structural Join
Index Hierarchy (SJIH) indexing technique. The
queries in this prototype are entered as XML
objects. Also the result is displayed in a human
readable XML format.

The newest work on content retrieval of flash
animations comes from Yinghua et al (2010) [5].
Their approach is to create a XML document
tree of the flash file, and trim this tree to a final
object fragment tree. To query a document one
has to construct a object characteristic tree for
the demanded characteristics and enter it in the
UI.

2.2 User Interfaces for Search in General
More work has been carried out in the field
of general search engine UI design, and the
characteristics and behaviors of people who use
a search engine.

Hearst (2009) [6] states that there are three
main search behaviors: fact finding (looking for
specific facts or pieces of information), informa-
tion gathering (the collection of information form
multiple sources) and browsing (visiting web
pages without a particular goal). Furthermore
there are common search patterns people tend
to use, as Morville and Callender (2010) [7]
mentioned. In fact it’s important that a search



3

engine easily allows to formulate queries, adapt
and change them according to the users needs
and preferences and direct the user to results,
even if the user doesn’t know exactly what he
or she is looking for.

As generally in software development, the
design of the user interface is one of the most
important steps in search engine development
(Stone et al (2005) [11]). The UI has to support
the user in their intentions and adapt to differ-
ent search patterns. There are several different
search patterns one has to take into account
when designing the UI of a search engine. These
patterns are Quit, Narrow, Expand and Pearl
Growing. Additionally there are anti-patterns
as Pogosticking and Trashing, as described by
Morville and Callender (2010) [7]. At Quit the
user searches and exits after the first query.
This can be avoided by providing a proper
no results page, so that the user is guided to
a better result set. Narrow is the second most
common search pattern. Here the user adds
search terms to the query to specify what he
or she’s looking for. Providing a bigger input
box for the search query is helpful here, as
then there is more space for search terms that
lead the user to relevant results. The opposite,
Expand, is less common, as the user normally
doesn’t remove terms from his query. A way
to broaden the search if there are not enough
results, is to show related search terms next
to the input box and, if more than one search
term, propose the user to search for one less
term. Pearl Growing is a technique for advanced
searchers, where the user retrieves new search
terms from the content and the metadata of
one good early search result. A way to aid this
pattern in the UI is to provide a ”similar results”
button. A tradeoff in the design is to provide
enough relevant search results on each page,
and also provide enough information about
individual search results to avoid Pogosticking,
where the user often switch between the actual
results and the results page of the search engine.
Finally Trashing, the continued partial refining of
a search term, can be avoided by autocomplete
that aids the users in spelling mistakes and
autosuggest that may lead the user away from
an initial wrong guess of the search terms
(Morville and Callender (2010) [7]).

Spink and Jansen’s work (2005) [9] suggest
further that users tend to view only one result
page (approx. 85%), and only open a very few
documents on that one page. This is despite
very low use of advanced search options like
boolean and quoted terms. Only a small part
of search queries are refined to improve results.
Also results with thumbnails are considered to
be more relevant than other results on a page
(Hearst (2009) [6]). Spink and Jansen (2005) [9]
also note that there is growing trends towards
more diverse terms, longer queries and more
use of advanced functions.

Currently most search engines focus on key-
word retrieval methods. Contrary, in a multi-
media context, content-based retrieval methods
are more interesting. An actual used retrieval
method for images is query by example. Un-
fortunately one has to know much about the
visual property of the image one is searching
for to get proper results. Furthermore there are
limited possibilities to query for metadata, for
example to search by director or creator of a
video (Hearst (2009) [6]).

Finally there are general guidelines concern-
ing the design of search engine UIs. Thus it is
important to offer informative feedback to the
user, as the current status of the system and to
display the search results immediately. Next, the
system should support the user control, for ex-
ample through a relevance ranking. Also simple
error handling, as avoiding an empty result set,
and a consistent UI should be a goal of search UI
designers (Hearst (2009) [6]). Furthermore it is
helpful to provide snippets of the found items,
so that the user gets an idea of the content
and creates links to similar results (Morville
and Callender (2010) [7]). A common pitfall of
search engines is to provide no proper ”No
Search Results” page which provides the user
”a way out” (Nudelman (2011) [8]). Another bad
mistake is to provide a graphical or numerical
relevance score next to the results, as they don’t
add relevant information to the user and may
even confuse them (Hearst (2009) [6]).

3 REQUIREMENTS

The requirements of the search engine are all
related to the user interface, as this is the



4

focus of our work. We wanted to build a UI
that allows the user gets an impression of the
content of the multimedia presentation at the
first glance. Thus we made a brainstorming of
possible features and agreed on the following
ones. Following that, we created user stories for
each requirement and implemented them in the
front-end.

1) Search Page
a) The user should be able to enter a key-

word based query: The search interface
itself should basically only support text
based query for contents, since we only
support queries based on the containing
text in the flash file. An advanced search
interface, that may even confuse the user
– as is the case in the FLAME prototype
(Fig. 3) (Yang et al (2007) [2]), is not
necessary here. Furthermore a drawback
of advanced search methods like query
by example is that the searcher already
has to know much about the result he or
she’s looking for (Hearst (2009) [6]).

b) The user should be able to require the
results to contain video or audio con-
tent, animations or interactional parts:
In addition to the text based query, we
agreed on the possibility to filter the
flash files for those that contain audio
or video files, animations or interaction.
This is a contribution to the specialty
of multimedia content, as a user might
want to require a flash file to have for
example audio inside, when he searches
in a specific music related search domain.

2) Search Result Page
a) The user should get a quick impression

of the flash document content: One of
our initial requirements was that the
user gets a first impression of the found
movies right away. Thus every result
should have a thumbnail. This is a major
lack of the current way to search for
flash content on Google, which provides
only text output as a result (Fig. 1).
Evidence suggests that thumbnails are
scanned faster than text, and improve
the performance of the user to find good
results (Hearst (2009) [6]).

b) The user should be able to interactively
explore the flash documents: We wanted
the results to be interactive, so that you
get a better idea of the actual content
of the flash file. Thus at mouseover of
the thumbnail, a small animation should
present the different views of the docu-
ment. Like this, a first step against Pogo-
sticking is made (Morville and Callender
(2010) [7]).

c) The user should get a quick overview
whether audio or video content, anima-
tions or interactional parts are included
in the flash documents: We came up with
the idea to provide more information
about different media content types like
audio or video and whether the docu-
ment includes animations or supports
interactions. This adds important infor-
mation in the multimedia context of flash
movies, and reduces short term memory
load from the user because he or she
doesn’t need to take that in mind when
comparing different results - one more
reduction of Pogosticking.

d) The system should display the relevance
of the flash documents in an intuitive
way: We wanted the search engine to
have a visual and intuitive relevance
ranking. Because results with bigger
thumbnails seems to be more important
to the user (Nudelman (2011) [8]) we
came up with the idea of the thumbnail
size as indicator for the absolute rele-
vance in context of the query term. The
images should also be ordered from top
to bottom to view a relative relevance be-
tween the different results. Like this also
people from other cultural backgrounds,
who may read from left to right, get an
intuitive idea of the ranking. Through
the absolute and relative relevance the
user gets double feedback which results
are the most important.

e) The user should be able to explore more
details of the flash document: We wanted
to allow users to explore more details
of the flash document within a details
view by clicking on the thumbnail of a
result. This view should contain again



5

the indicators for media contents, ani-
mations and interactional parts. We also
initially planned to change the audio and
video icons in the backend at mouseover
to ”play” buttons and play the media
when clicking on it. We discarded this
requirement due to the large number of
short sequences of audio and video in
the flash files we tested it. Further it
should contain a bigger thumbnail of
the result. This thumbnail size is the
same every time, so that even the lower
ranked results with a smaller thumbnail
can be viewed easily without recognition
problems. Next to the thumbnail the
text contained in the document should
be displayed to let the user make his
own impression of the pertinence of this
document. The search terms that appear
in the text should be highlighted, so that
the searcher sees them in their context in
the result. Finally the view should also
contain a button to close the details view
and go back to the normal result page.

f) The user should be able to view the
document: Of course the user also needs
to view and maybe then download the
document. For this a link to the doc-
ument should be placed directly next
to the thumbnail in the search results
page. Also a button to view the doc-
ument should be placed in the details
view. Additionally the document will
be opened when clicking on the big
thumbnail inside the view, as this is more
intuitive than to extra click on a button
for that.

4 fulgeo
The fulgeo prototype (fulgeo: ”flash” in latin) is
a prototype intended to provide a novel and
intuitive user interface to search for and explore
flash movies, as representatives of multimedia
content.

4.1 Implementation
The prototype is split into two parts; the front-
end and the back-end. The first is what the

Fig. 4: Initial search UI

user sees when visiting the web page. It only
handles how things should be displayed, and
whenever the user search for something, it sends
the queries to the back-end, which does all the
work, and sends the results back to the front-
end to be displayed.

4.1.1 Frontend
The first thing you see when you open the fulgeo
search engine, is the text box for the search term,
the checkboxes to require special multimedia
contents, animations or interactional parts and
the current number of entries in the database
(Fig. 4).

We made sure to provide a large text box for
query terms, as longer text boxes encourage the
user to enter larger queries. Like this the user
finds more relevant results and the common
Narrow search pattern is supported (Morville
and Callender (2010) [7]). Also the number of
entries shows the actual status of the system,
and like this offers informative feedback to the
user. When entering a query and hitting the
search button the system also shows that it’s
working through a progress indicator, another
contribution to the design guidelines of Hearst
(2009) [6].

After the system finds the results and passes
them to the front-end, they are displayed in a
dynamic grid layout, produced by the Masonry
jQuery plugin (Fig. 5). In combination with our
already mentioned relevance indication by the
size of the thumbnails, this gives the user a good
overview of the results, as per requirement 2a
and 2d.



6

Fig. 5: Search Results Page

To limit the number of results per page
we introduced a pagination mechanism that
splits up the results (Fig. 6). Per page 20
items are displayed, so that the user gets a
reasonable amount of results without increasing
Pogosticking as enough information per result
are available (Nudelman (2011) [8]).

Fig. 6: Pagination on the Search Results Page

The search results layout needs to be compact,
yet informative, to fit as much information as
possible into the users view. Within a discussion
with experts in the field of user interface design
and multimedia, we agreed to show only the
most important elements of each file as a
thumbnail image with the title and compact
links to the actual file, as well as the indicators
for type of content (music, video, animation and
interaction). This should satisfy requirements 2a,
2c, 2e, and 1b. The results seemed a bit flat, and
lacked a real impression of the file, so animated
thumbnails were added refer requirements 2b
and 2e.

The details view allows continued browsing
of other results as well as providing an interac-

Fig. 7: Details View

tive way of looking into the details of a result
(Fig. 7). It also gives two ways to view the
flash file itself. The combination of the bigger
interactive thumbnail with the text is similar
to the approach of the Voxalead search engine
(http://voxaleadnews.labs.exalead.com/). This
is according to requirements 2c, 2e and 2f.

The technical part of the front-end is
JavaScript-heavy with focus on HTML5 and
CSS3. Support for old browsers and mobiles
was not considered, as it was outside the scope
of this project1. The front-end was written using
jQuery2, simple.js3, Masonry4 (a jQuery plug-in)
and Bootstrap5. jQuery is a standard javascript
library to simplify DOM manipulation tasks,
and should be familiar to anyone creating web-
pages. Simple.js is a minimalistic approach to
a MV* framework. It helps with structuring
code and includes some useful functions for
task like AJAX calls. Bootstrap is used for easy
paging, formatting of some HTML elements,
CSS reset and other handy CSS. The JavaScript
is divided into models and views. The three
views each have responsibility for a part of
the web-page. The masterView.js is perhaps

1. Due to jQuery and masonry it does work decently on some
old browsers and some phones.

2. http://jquery.com/; Version 1.9.1
3. http://simplejs.org/; Version 0.1.1
4. http://masonry.desandro.com/; Version 2.1.07
5. http://twitter.github.com/bootstrap/; Version 2.3.1

http://voxaleadnews.labs.exalead.com/
http://jquery.com/
http://simplejs.org/
http://masonry.desandro.com/
http://twitter.github.com/bootstrap/


7

unnecessary but was added to easily change
between different search result-displays if we
decided to create more than one. searchView.js
and resultsView.js are what they sound like.
searchView.js contains the code for the search
bar, and handling the user input. This input is
then sent to queryModel.js, which handles the
AJAX connection with the back-end. Displaying
the search results is handled in resultsView.js
via event calls from the queryModel.js. query-
ModelStatus.js is a very small model to get an
up to date number of files in the database.

4.1.2 Backend
There are two main services that need to be
handled by the backend of the multimedia
search engine: fetching and processing flash
content, and providing search access to the
stored information about the flash content. To
address those needs, PostgreSQL6 as a database
system for information storage, and software
developed in Python are used. The selection of
the Python7 script language allowed fast devel-
opment leveraged by having readily available
libraries to access the Google Search Engine8,
implement web services9 and interacting with
the PostgreSQL datababase10. In the following,
the different modules of the multimedia search
engine backend are further explained.

As as first step, the Google custom search API
is queried specifically for flash content using
the

filetype: swf

operator combined with a desired keyword.
This request, in case elements are available, is
returned as a JSON formatted list, consisting
of different attributes such as website title,
URL and description. Next, using the URL, the
flash content is downloaded by the script for
further processing. For each result an instance of
the object FlashElement is created. At creation,
seven further processing steps, which make

6. http://www.postgresql.org/; Version 8.4.16
7. http://www.python.org/; Version 2.7
8. https://code.google.com/p/google-api-python-client/;

Version 1.1;
9. http://www.tornadoweb.org/en/stable/; Version 3.01
10. pyPgSQL: https://pypi.python.org/pypi/pyPgSQL; Ver-

sion 2.5

use external software, are started. (1) The first
one renders a thumbnail of the downloaded
flash file by calling the swfdec-thumbnailer11

command. The result is stored on the file system,
and can be accessed by the front-end later on.
(2-6) Next, by using swfdecoder (included in the
swftools12 package; Version 0.9.2) and swfmill13,
the flash file is analyzed for containing audio,
video, animation, interaction and text contents.
(7) In the last step, several images from within
the flash animation are rendered and stored in
order to provide data for the quickview of ele-
ments in the front-end by using the swfrender
(also part of swftools) program. After finishing
the processing of the flash element, the data is
inserted in the database.

The web service, which provides database
access for the front-end, has been implemented
using the Tornado library. When starting the
backend.py script with the -server parameter,
an instance of the web server is launched. There
are three services implemented in the backend.

The first one, which can be accessed using
the URL http://server-name/search, runs a search
on the database using the parameters query and
page, as well as four boolean values: audio,
video, interaction and animation. The query
parameter defines the desired keyword that
should be searched in the database. Users can
combine different keywords that have to be
included in the result by separating them with
blanks and can also exclude keywords by using
- in front. In case a users selects one or more of
the search refinement select boxes (Fig. 8) in the
frontend, the query is adjusted to return only
results that must include the selected attributes.
The database ranks the results based on their

Fig. 8: Selectboxes in Search UI

cover density (Clarke et al (2000) [1]), and
returns a list of 20 results including html tags
for highlighting the search terms in the front-
end, as well as an ranking value normalized
between 0 and 1 that is used for the calculation

11. http://swfdec.freedesktop.org/wiki/; Version 0.8.4
12. http://wiki.swftools.org/
13. http://swfmill.org/; Version 0.3.0

http://www.postgresql.org/
http://www.python.org/
https://code.google.com/p/google-api-python-client/
http://www.tornadoweb.org/en/stable/
https://pypi.python.org/pypi/pyPgSQL
http://swfdec.freedesktop.org/wiki/
http://wiki.swftools.org/
http://swfmill.org/


8

of the thumbnail size in the front-end. Next,
the service accessible on the URL http://server-
name/searchcount returns the number of results
that are available for a certain search request.
This is required to provide paging in the front-
end. It seems strange to have this as a separate
query, but the optimization of queries in the
database makes it impossible to get this number
together with the first search-query.

Last, http://server-name/status returns the total
number of elements in the database to be
displayed when the user accesses the search
front page.

4.2 Testing
For performance evaluation we loaded more
than 1300 entries in the database and tested
with several different queries of various query
terms and in different search domains. Further
we did a rough usability testing to make sure
that the UI isn’t missing intuitive functions.

5 DISCUSSION

In our work on user interfaces for multimedia
search engines, we started with a list of require-
ments for our fulgeo prototype. We believe that
we included all of the requirements from the
beginning of the work in our final prototype,
and arranged it in an intuitive and user-friendly
way. This can be said especially in comparison
with the FLAME prototype (Yang et al (2007)
[2]), that only provides a static way of exploring
the search results. Also it doesn’t contribute to
the possible variety of multimedia content in the
flash document, in contrast to our approach of
providing indicators for the contents of different
media types and animations or interactional
parts. Also, other existing flash search engines,
like the work from Ding et al (2003)[3], Chung
et al (2004) [4] and Yinghua et al (2010) [5],
fall behind our UI solution either through a
static interface, similar to the one of FLAME, or
already through a cumbersome and user-hostile
way of query formulation.

Furthermore, with the great number of more
than 1300 files in our database, we outperform
previous flash search engines by far. Previously,
the FLAME prototype with around 200 (Yang

et al (2007) [2]), and the prototype of Ding et
al (2003)[3] with 224 files, were considered as
the biggest flash search engines available.

Initially we had three ideas for displaying
detailed information of a selected search result.
The first one was an in page pop-up along the
lines of Facebook’s image gallery (Fig. 9). We

Fig. 9: Facebook image gallery

discarded that, since pop-ups may be perceived
as hindering by users, due to the fact that they
block the access of all other content on the site,
even though it is still shown in the background.
The second idea was to switch out the entire
search results page with one large detailed view
of the selected item. We didn’t like this either, as
the user had no overview over the other results
anymore, and also had to close this view in
order to select other search results - thus we’d
create a danger of Pogosticking on our own site.
Our third idea was to expand the thumbnail
into a larger area, but still in line with the other
results, which is is what Google does for their
image search. This way we could display more
information, and the user would not have to
close any windows in order to select another
result from the search. This approach would
however be difficult to structure properly with
the thumbnails being different sizes. We ended
up going with a fourth idea. The details view
should slide in from the bottom of the page,
covering some of the other results. All the other
results should fade out, but still be visible. This
way the user could select another result from
the search, and the details for this result would
replace the previous details.

We originally wanted a form of infinite
scrolling for the search results page, like that of
Google image search. We did however not find



9

any plug-in or framework for that which fit the
rest of the workings of the front-end, so we left
it out. Implementing something like that could
have helped combat the issue of most users not
looking past the first page, by providing them
with one long page. Morville et. al. states that
infinite scrolling my be confusing for users that
are used to the standard model[7]. So infinite
scrolling would have been a trade-off at any
rate.

A small drawback of our work was the late
switch from the algorithm domain to a broader
field of multiple search domains. Due to this,
we late discovered that the feature to preview
the audio or video content when hovering and
clicking on the multimedia indicators in the
details view actually makes sense. We excluded
it in the first place due to our initial focus
and testing in the algorithm domain, where
the documents only contained small pieces of
sound and video - and where the feature was
useless. We found that this feature makes much
more sense in a search domain that focuses on
music and visual content, so we have added it
to the future work, and it will be considered in
the next version.

6 CONCLUSION

This paper investigated the problem of provid-
ing an intuitive and easy-to-use search user
interface for multimedia content. We presented
general requirements and guidelines one has
to consider in the design of search user in-
terfaces and finally presented our prototype
fulgeo, providing a new user interface which
aims on allowing users to intuitively scan the
multimedia content and find the most relevant
documents for their purpose. Thus, fulgeo is a
possible solution that allows easy exploration
of multimedia contents.

6.1 Future Work
Future work on our research foremost includes
to test on an independent group of people
whether the user interface really improves the
usability and findability for users in comparison
to common solutions to find multimedia content
like Google.

Further work has to be done also on the
front-end of the prototype. We intentionally
excluded autocomplete, autosuggest and partial
match functions from the feature list due to the
limited time frame for this work and the higher
importance of other features. An autocomplete
function for the query term suggestion, to
aid the user in finding proper search phrases
that relate to his own thoughts and like this
offer informative feedback (Hearst (2009) [6]),
is part of the future work. Also part of future
work is an autosuggest function that shows
the user related search queries in form of links
for forward navigation. These can be included
in the ”no search results” page, to provide a
”way out”. Also a partial match function that
automatically excludes some of the search terms
the user entered, if it’s more than one term
and there are no matches (Nudelman (2011)
[8]) will is included here. This improvement
of the ”no search results” case can also help
to avoid the Quit search pattern (Morville and
Callender (2010) [7]). Additionally the excluded
preview feature for audio and video content
should be implemented in the next version,
as stated in the discussion section. Another
improvement for the front-end is the inclusion
of a history library like History.js, so that the
user can use the back and forward buttons of
his browser, which currently is not possible.
This can be quite annoying to a user, but as
this is only a prototype with limited time for
development, we decided to leave this out. Also
a mobile themed and IE-compatible version of
the prototype can be added to this list. Currently
it works as intended on the latest versions of
Chrome, Firefox, Maxthon, Safari and IE 10.

The back-end should have support for other
languages than english, and also add the extra
’count’-query within the regular search handler
(to avoid two database connections, when only
one is needed). The back-end should also move
away from running it’s own web-server, as
fulgeo, in most cases, would be used together
with another web server serving the front-end.
Now the back-end is configured to listen on
it’s own port, which the front-end should
be able to reach (and thus, also the client).
Current testing was done with the back-end
listening on port 8888, however, in some places,



10

the client would be behind a firewall, and
port 8888 would not be available. In such a
scenario, the user would be presented with a
timeout-error on the front-page, since the client
can’t reach the back-end on port 8888.

In conclusion, we developed a new approach
to intuitively search for, and explore, multime-
dia content, and implemented the approach in
our fulgeo flash search engine prototype. It can
be considered as the most comprehensive and
intuitive to use flash search engine out there,
and also the one with the largest amount of files
indexed. Finally this could be a first step to more
user friendly search interfaces for flash retrieval,
and even multimedia content in general.

ACKNOWLEDGMENTS

The authors would like to thank the chair
of Prof. Dr. Wolfgang Effelsberg (Praktische
Informatik IV) and especially Dr. Stephan Kopf
for organizing the Teleseminar, as well as Ly-
dia Weiland and Juniorprof. Dr. habil. Ansgar
Scherp for supervising and providing us with
feedback troughout the seminar project. We’d
also like to thank Prof. Thomas Plagemann from
the Department of Informatics, University of
Oslo, for organizing the course this project has
been a part of.

REFERENCES

[1] C. L. Clarke, G. V. Cormack, and E. A. Tudhope, ”Relevance
ranking for one to three term queries” Information Processing
& Management, vol. 36, no. 2, pp. 291–311, 2000.

[2] J. Yang, Q. Li, L. Wenyin, Y. Zhuang, ”Content-based
Retrieval of Flash movies: Research Issues, Generic Frame-
work, and Future Dircetions” Multimedia Tools and Applica-
tions , 2007, vol. 34, pp. 1-23, .

[3] D. Ding, Q. Li, B. Feng, L. Wenyin, ”A Semantic Model
for Flash Retrieval Using Co-occurrence Analysis” MUL-
TIMEDIA ’03 Proceedings of the eleventh ACM international
conference on Multimedia , 2003, pp. 239-242.

[4] E. Hon Chung, C. Fung, Q. Li, ”Rich Media Retrieval
in an Object XML Framework: a Case Study with Flash
Movies ausing Structural Join Index Hierarchy” 28th Annual
International Computer Software and Applications Conference
, 2004, pp. 51-52.

[5] N. Yinghua, Y. Liyong, M. Yongjin, J. Bingyao, ”Research
on Content Retreival of Flash Animation Based on XML”
Ubi-media Computing (U-Media), 2010 3rd IEEE International
Conference , 2010, pp. 64-67.

[6] M.A. Hearst, Search User Interfaces New York, NY:
Cambridge University Press, 2009.

[7] P. Morville, J. Callender, Search Patterns Sebastopol, Calif.:
O’Reilly Media , 2010.

[8] G. Nudelman, Designing Search - UX Strategies for eCommerce
Success Indianapolis: Wiley Pub, 2011.

[9] A. Spink, B.J. Jansen. Web Search: Public Searching of the Web
Springer, 2005.

[10] K.S. Candan and M.L. Sapino. Data Management for Mul-
timedia Retrieval New York, NY: Cambridge University
Press, 2010.

[11] D. Stone, C. Jarrett, M. Woodroffe, S. Minocha. User
Interface Design and Evaluation San Francisco: Morgan
Kaufmann Publishers, 2005.


	Introduction
	Background

	Related Work
	Multimedia Search
	User Interfaces for Search in General

	Requirements
	fulgeo
	Implementation
	Frontend
	Backend

	Testing

	Discussion
	Conclusion
	Future Work

	References

